
Computational Biology and Chemistry 28 (2004) 97–107

Identification of related gene/protein names based on
an HMM of name variations

L. Yeganova∗, L. Smith, W.J. Wilbur

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bldg. 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA

Received 4 November 2003; received in revised form 11 December 2003; accepted 12 December 2003

Abstract

Gene and protein names follow few, if any, true naming conventions and are subject to great variation in different occurrences of the same
name. This gives rise to two important problems in natural language processing. First, can one locate the names of genes or proteins in free
text, and second, can one determine when two names denote the same gene or protein? The first of these problems is a special case of the
problem of named entity recognition, while the second is a special case of the problem of automatic term recognition (ATR). We study the
second problem, that of gene or protein name variation. Here we describe a system which, given a query gene or protein name, identifies
related gene or protein names in a large list. The system is based on a dynamic programming algorithm for sequence alignment in which the
mutation matrix is allowed to vary under the control of a fully trainable hidden Markov model.
© 2003 Published by Elsevier Ltd.

Keywords:Automatic term recognition; Gene name variation; Hidden Markov model; Information extraction

1. Introduction

1.1. Background

Identification and classification of named entities in sci-
entific text is a prerequisite for automatic extraction of
knowledge from literature (de Bruijn and Martin, 2002).
Although named entity recognition might be regarded as
a solved problem in some domains, it still poses a signif-
icant challenge in the area of molecular biology. Several
researchers have looked at the problem of identifying gene
or protein names in molecular biology texts (Collier et al.,
2000; Franzen et al., 2002; Fukuda et al., 1998; Hanisch
et al., 2003; Krauthammer et al., 2000; Narayanaswamy
et al., 2003; Proux et al., 1998; Tanabe and Wilbur, 2002). A
large number of different methods have been applied to this
problem, including part-of-speech tagging, hidden Markov
models, decision trees, Bayesian methods, rule based sys-
tems, regular expressions, and a variety of knowledge based
resources. The problem of determining when two differing

∗ Corresponding author. Tel.:+1-301-402-0776;
fax: +1-301-480-2290.

E-mail address:yeganova@ncbi.nlm.nih.gov (L. Yeganova).

strings represent the same gene or protein seems to have
received much less attention. It is to this problem of name
variation, not unrelated to the first problem, that we wish to
give attention here. In fact, we believe it is useful to relax the
criterion in the name variation problem somewhat and ask
how to determine when two differing strings represent re-
lated genes or proteins. If we can solve this relaxed problem
then we may be able to apply that solution to make progress
on the named entity recognition problem. Genes and pro-
teins tend to come in families or related groups, and if we
can compile a reasonable list of genes and recognize their
variants then this capability may be used to identify the nu-
merous variations of gene or protein names seen in free text.

Automatic term recognition (ATR) has received attention
for general text (Frantzi et al., 2000; Hahn et al., 2001;
Jacquemin, 1994; Jacquemin, 2001; Nenadic et al., 2002;
Nenadic et al., 2003). Jacquemin (2001)has described the
problem as that of representing and processing morpholog-
ical, syntactic, and semantic variations. Methods that have
been applied in the general case have also been applied to
the problem of gene name variation detection. One type of
gene name semantic variation involves gene name abbrevia-
tions and their corresponding full forms. Methods have been
developed to relate gene name full forms to their abbrevi-

1476-9271/$ – see front matter © 2003 Published by Elsevier Ltd.
doi:10.1016/j.compbiolchem.2003.12.003

98 L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107

ations (Liu and Friedman, 2003; Yu et al., 2002). Another
approach allows the identification of gene name synonyms
based on the recognition of certain lexico-syntactical pat-
terns in which they co-occur (Yu and Agichtein, 2003; Yu
et al., 2002). Both of these methods use the context of oc-
currences in actual text and find related gene names that
would be difficult or even impossible to recognize based on
name string comparisons alone. These are important meth-
ods for recognizing semantic name variations (unrelated
string, same meaning). However, our interest is in how to
recognize those name variations that are reflected in the un-
derlying strings being compared.

Name variations that are reflected in the underlying strings
are generally morphological (related by derivation or inflec-
tion), as seen in the relatedness ofrecognitionand recog-
nize, syntactical (different grammatical constructions with
the same meaning and related underlying words), as seen
in the relatedness oflung cancerandcancer of the lung, or
some one of a host of poorly characterized variations that
occur sporadically. This later category would include such
variations asp53versusp53 gene, caspase-3versuscasp3,
or bcl2 versusbcl-2 versusbcl 2. Terms may differ in token
separators and punctuation, have additional or missing char-
acters, be misspelled, truncated, or abbreviated. As another
example,abl1-bcr gene, abl1/bcr gene, bcr-abl1 gene, and
5’abl1 all refer to theabl gene. Few methods for handling
such term variations have been developed. A Basic Local
Alignment Search Tool (BLAST)-based system presented by
(Krauthammer et al., 2000) uses approximate string match-
ing techniques and dictionaries to recognize spelling vari-
ations in gene or protein names. They have encoded gene
names and text in terms of the nucleotide alphabet and have
used BLAST to look for ‘homologies’ between a query gene
name and the text. A similar problem was addressed by
(Cohen et al., 2002) who studied contrast and variability
in gene names to develop heuristics to distinguish between
gene or protein names with different meaning from names
that are synonyms. They found that capitalization could be
ignored, parenthesized material and hyphens were optional,
and vowels tended to be interchangeable. However, they did
not implement a system based on these observations.

There are other works that are related less to the prob-
lem that we pose, nevertheless the ideas employed may be
useful for our problem. For example, (Hahn et al., 2001) ap-
proached the problem of morphological variations for med-
ical document retrieval in German by segmenting query and
database terms into medically plausible subword units that
are morphemes or their combinations. One of our approaches
will adapt this idea of subwords and apply it to gene name
recognition.

1.2. Overview

We studied a corpus of gene names to find potential meth-
ods for identification of related gene or protein names based
on their underlying strings. Among several methods tested

we focused our attention on the following: charactern-gram
methods and hidden Markov models (HMM). Below we give
a motivation for using these methods and an overview of the
related literature.

Attempts have been made in the past to use character
n-grams derived from the words of a document to repre-
sent that document for the purpose of similarity match-
ing and retrieval. Particularly, the method was utilized by
(Damashek, 1995) in an attempt to perform a text cate-
gorization task. However, this approach has been judged
as not competitive with other more standard approaches
(Salton, 1995; TREC-program-committee, 1995). The char-
acter n-gram method was later used by (de Bruijn et al.,
2000) who compared it with word-based information re-
trieval methods and again found that word based methods
were consistently better than charactern-grams. The prob-
lem encountered in both cases was thatn-grams are too non-
specific for the words they represent, and given a document
with a large number of words, enoughn-grams will be gen-
erated in common with an unrelated document to cause am-
biguous retrieval results. For example the character trigram
fix is contained insuffix, prefix, infix, andfixture, etc. How-
ever, (Kim and Wilbur, 2001) demonstrated that more useful
results can be obtained by applying this method to shorter
documents, i.e. phrases. The reason for this is that a few
words in a phrase are not sufficient to allow much ambiguous
matching. Following them, we have implementedn-gram
phrase matching algorithms. This proves beneficial because
gene names are represented by reasonably short phrases.

As mentioned above, one could view the problem of iden-
tifying related gene or protein names as a biological se-
quence alignment as in (Krauthammer et al., 2000), and
moreover, one could treat names in their original alphabet.
The standard approach would apply dynamic programming
algorithms (Gotoh, 1982; Needleman and Wunsch, 1970)
that align two sequences of symbols, achieving a minimal
cost. The cost of an alignment is the sum of the costs of the
symbols paired by the alignment, where one of the symbols
may be a gap. These costs depend on a predetermined muta-
tion matrix of symbol-pair cost values, and hence the useful-
ness of the resulting alignment depends on how accurately
the model reflects the nature and origin of the sequences in-
volved. Later, the problem has been reformulated in terms
of a random process with a probability model by (Durbin
et al., 1998). He proposed using Hidden Markov Models
for pairwise sequence alignments: just as a standard HMM
can generate a single sequence of symbols, a pair HMM
can generate an aligned pair of sequences. He proposed a
three-state HMM, where one state corresponds to matches,
and the other two states correspond to insertions to the first
and second sequence, respectively. Each subsequent state is
chosen according to the distribution of transition probabili-
ties leaving the current state, and a symbol-pair to be added
to the alignment is chosen according to the emission distri-
bution in the new state. The challenge of the approach is to
get reasonable estimates for transition and emission proba-

L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107 99

bilities, for a given state network.Smith et al. (2003)pro-
vided an advance by presenting a training procedure for the
pair HMM which is unique in that one specifies a collection
of pairs of sequences without any corresponding alignments.
One assigns initial parameter values for transition and emis-
sion probabilities (for example, random or uniform), which
are iteratively updated during the training to produce maxi-
mum likelihood estimates based on the set of training pairs.
The resultant probabilities govern state transitions and out-
put of paired or gapped sequence elements.

In this work we develop a training set of related gene
name pairs and use it to train several pair HMM models.
The best of these models has proved to be the most sen-
sitive method we have found to compare gene names and
detect related pairs. However, the run time of the HMM
models is long and we found a substantial time savings
by combining the best of the HMM models with the best
of the n-gram methods briefly described above.Section 2
of the paper describes the data and preparation of the data
sets. Section 3 provides more detail on the recognition
methods that we use, including the pair HMM, BLAST,
and n-gram phrase matching algorithms.Section 4gives
evaluation results, and we conclude with a discussion in
Section 5.

2. Data source and preparation

2.1. Creating data sets

We have obtained a list of 32,000 gene and protein
names from LocusLink (Pruitt and Maglott, 2001) and the
Gene Ontology Consortium (Ashburner and Lewis, 2002;
Consortium, 2000). In the scope of this research we did not
differentiate between gene and protein names, hence they
all are referred as gene names. Out of that list we chose the
names occurring in at least 100 MEDLINE documents in
order to have enough statistical data for Bayesian learning,
but in no more then 10,000 MEDLINE documents, as very
high frequency names may be uninformative. From the
resulting set of 3,754 gene names we chose 90 (listed in
Appendix A), which we will refer to as query gene names
or {qni}90

i=1. These 90 names were chosen randomly, except
the numbers have been chosen to represent names starting
with every letter of the alphabet proportional to their dis-
tribution in the original set. For instance, the original set
contained 124 gene names starting with letter ‘B’, and pro-
portionally our sample contains three names starting with
‘B’. Gene names starting with letter ‘A’ are overrepresented
due to the fact that they were already processed for a pre-
liminary study (Smith et al., 2003), and we have included
all of them.

For each query gene name, the goal was to identify closely
related terms from a list of potential gene names. First, we
retrieved MEDLINE abstracts related to the gene name by
contents, but not containing that name spelled exactly as it

appears in the query. To do this, we used Naı̈ve Bayesian
learning (Mitchell, 1997) to learn the difference between the
abstracts that contain the query gene name and the remaining
MEDLINE abstracts that do not. The later abstracts were
then scored according to the log odds of being related to the
abstracts containing the query gene name and placed in rank
order. High scoring documents are more likely to discuss
the subject of the query gene name but under a different
name. We limited our consideration to the 10,000 top scoring
abstracts.

The next step was to apply the ABGene tagger (Tanabe
and Wilbur, 2002, and freely available atftp.ncbi.nlm.nih.
gov/pub/tanabe) to the above chosen abstracts to extract po-
tential gene or protein names, thus creating for each query
gene nameqni a corresponding setGNqn(i) that contained
all these potential gene names. This extracted set of poten-
tial names generally contained many terms unrelated to the
query gene name. In order to locate the terms inGNqn(i)

that are closely related to the query nameqni we first ap-
plied a crude algorithm. A phrase inGNqn(i) was consid-
ered to be potentially related toqni if it satisfied one of the
conditions:

• the phrase contained all the tokens of the query gene name
in any order;

• the phrase contained an abbreviation of the query gene
name from a standard list of abbreviations (McCray et al.,
1994).

Non-alphanumeric characters were ignored at this
step. This process selected most of the data of interest. Fi-
nally, we manually reviewed all the data to correct possible
false positives and false negatives. The result was a subset
RNqn(i) of GNqn(i) for everyqni that contained phrases that
were humanly judged related to the query gene nameqni.
The criterion of relatedness we used was that if an interest
in qni by an investigator would likely imply an interest in
x ∈ GNqn(i) then x was considered a member ofRNqn(i).
The set of all relevant phrases in{RNqn(i)}90

i=1 comprised
<1% of the phrases in{GNqn(i)}90

i=1.
In summary we have obtained a set of query gene names to

be examined,QN = {qni}90
i=1, and corresponding phrase sets

GNqn(i) andRNqn(i) ⊂ GNqn(i), i = 1, . . . ,90 whereRNqn(i)

denotes the set of phrases amongGNqn(i) that were judged
to be related to the query nameqni. As an example, one
of the queries,coproporphyrinogen oxidase, has 13 related
phrases, which are:

coprogen oxidase, coprogen oxidase gene, coprogen
oxidase rna, coproporphyrinogen iii oxidase, copropor-
phyrinogen iii oxidases, enzyme coproporphyrinogen
iii oxidase, lymphocyte coproporphyrinogen iii oxidase,
oxygen-independent coproporphyrinogen iii oxidase,
oxygen-independent coproporphyrinogen iii oxidases, co-
proporphyrin iii oxidase, coproporphyrin oxidase, oxygen-
independent coproporphyrinogen iii, oxygen-independent
coproporphyrinogen iii dehydrogenases.

ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe
ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe

100 L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107

Another query11beta hsdhas 495 related phrases, inclu-
ding:

11 beta hsd, 11 beta hsd2 protein, 11 beta hydroxysteroid
dehydrogenase, 11 beta-hydroxysteroid dehydrogenase-1,
11 beta-hydroxysteroid dehydrogenase type 1, 11 be-
tahsd2 enzyme, v11-beta-hydroxysteroid dehydrogenase,
11beta-hsd2 gene, 11betahsd1 dehydrogenase, enzyme 11
beta-hsd, inhibiting 11beta-hydroxysteroid dehydrogenase
type 2, type 1 11 beta-hsd, type 2 11 beta-hsd mrna, 1lbe-
tahsd isozymes.

2.2. Training/testing sets

To estimate the accuracy of the methods used, we have
performed three-fold cross-validation based on the three
training and testing sets that we have created as described
below. The set of 90 indices was randomly partitioned into
three sets of thirty indices each,I1, I2, andI3. The first train-
ing set was based on the 60RNqn(i), such thati ∈ I1∪I2. For
eachi, let ni = ||RNqn(i)|| (here ||X|| denotes the number
of elements inX). Every phrase in eachRNqn(i) was paired
with the remaining phrases in that sameRNqn(i), resulting
in Ni = ni(ni − 1)/2 different pairs for the setRNqn(i). To
avoid over representing gene names with many variants in
the training sets, all related pairs were taken whenNi ≤ 300,
but otherwise only 300 were randomly sampled from the
set ofNi. For example, gene namecoproporphyrinogen oxi-
dasehas 13 related phrases which generate 78 related pairs,
among them:

coproporphyrin oxidase;
oxygen-independent coproporphyrinogen iii.

coprogen oxidase rna;
coproporphyrinogen iii oxidase.

enzyme coproporphyrinogen iii oxidase;
coproporphyrin iii oxidase.

On the other hand, gene name11beta hsdhas 495 related
phrases generating 122,265 pairs from which 300 were ran-
domly sampled.

The test set for the first training set was created using all of
theGNqn(i) corresponding to the remaining 30 query names,
i.e. GNqn(i), i ∈ I3. A given query nameqni, i ∈ I3, was
paired with all the phrasesx ∈ GNqn(i), and the pairs were
marked as positive examples ifx ∈ RNqn(i) and negative
examples otherwise. Our methods were rated on how well
they succeed in correctly classifying the members of the test
sets.

The remaining two training and test sets were created in
like manner. The resulting training data sets on the average
consist of approximately 13,000 pairs of related phrases.
Each test set contained about 823,500 possibly related gene
or protein name pairs distributed at an average rate of about
27,450 pairs per query name over the 30 query names in the
test set. The training sets were used to train the HMM mod-
els. The other methods did not require training. All meth-

ods were tested on the three test sets, and the results were
averaged.

3. Recognition methods

Here we provide details of the methods we used to iden-
tify related gene names. The methods are Hidden Markov
Models (HMM), BLAST, andn-gram Phrase Matching Al-
gorithms of several types. These algorithms can be used sep-
arately, or may, in some cases, be combined to decrease run
time or improve accuracy.

3.1. Hidden Markov Model

The parameters needed to define an HMM are its states,
transition probabilities, and emission probabilities. We first
describe the elements of an HMM designed to output a lin-
ear sequence. LetN denote the number of states of a hid-
den Markov model, with initial state probabilities{πi}, and
transition probabilities{aij }. Let the alphabet for output be
S = {uk}Mk=1 and the probability ofuk as output from state
i be denoted bybik. Let X = {uk(j)}Lj=1 denote an observed
sequence. Then theViterbi algorithm allows one to com-
pute the probability of the most likely path producingX as
output. The algorithm begins in position 0 without any out-
put and with a set of probabilitiesp0,i = πi and recursively
defines{pt,i} by

pt+1,i = maxj pt,jajibik(t+1) (1)

The maximal probability path is defined by thatj for which
pL,j is a maximum and the state sequence or path is recov-
erable by setting backward pointers at each step in (1). The
forward algorithmcomputes the sum of the probabilities of
producingX as output over all possible paths that the pro-
cess could take. It is identical to the Viterbi algorithm except
for the recursion (1), which becomes

pt+1,i =
∑
j

pt,jajibik(t+1) (2)

In this case the overall probability of observing the output
sequenceX is

∑
j pL,j.

Thus far we have dealt with a hidden Markov model de-
signed to output a simple linear sequence. The situation for
hidden Markov models that output a sequence alignment is
slightly more complicated. In this case the alphabetA from
which sequence elements must be chosen combines with an
elementg representing a gap to form the alphabet for output
according to

S = (A ∪ {g}) × (A ∪ {g}) − {(g, g)} (3)

Now instead of moving linearly along a sequence one is
moving over a grid in two dimensions. Instead of looking
back from any pointt + 1 in a sequence tot as in (1) and
(2), one now looks back from any point(r + 1, s + 1) on

L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107 101

the grid to three possible points(r + 1, s), (r, s + 1) or
(r, s) from which one may have come. Optimization in (1)
or summation in (2) is now not only over the states but
over the three prior points from which one may have come.
There are slight modifications at the origin and along the
sides of the grid in that one has fewer directions to look
back. Whereas for a sequence the traversal is completed
when one reaches the end of the sequence, on the grid the
traversal is completed when one reaches the corner opposite
from the origin where one began. Movements horizontal or
vertical correspond to output of a gap in one sequence and
the next element of the other sequence, whereas movement
on the diagonal corresponds to output of the next element of
each sequence as a pair. For more details regarding general
HMMs see (Rabiner, 1989; Charniak, 1993), while further
details regarding pair HMMs may be found in (Durbin et al.,
1998; Smith et al., 2003).

To train the HMM we have used the extension of the
Baum–Welch algorithm applicable to pairs of related se-
quences, as described in (Smith et al., 2003). Given a train-
ing set of pairs of sequences that are considered related, the
training algorithm produces maximum likelihood estimates
for the HMM transition and emission probabilities. The re-
sults are strongly dependent on the state structure assumed
for the HMM. While the Baum–Welch algorithm (a form of
EM algorithm) can only guarantee a locally optimal solu-
tion, the results are generally found useful.

Once the HMM has been trained, the forward algorithm
can be used to compute the probability of observing a given
pair of strings (in our case phrases), and the Viterbi algorithm
can be used to find the most likely path though the states and
a corresponding alignment. Either one, the probability of
observation of a pair of phrases or the probability of the most
likely path can be used to construct a score measuring the
relatedness of two phrases. To test the scoring produced by
the forward algorithm, for each pair (qni, x), x ∈ GNqn(i) the
probabilities of the pairs (qni, x) and (null, x) are calculated
and the score is defined as the difference

score(x) = log10 Pr(qni, x) − log10 Pr(null, x) (4)

where null is the empty string. Scoring produced by the
Viterbi algorithm is the same except the probabilities of the
observation of pairs are replaced by the probabilities of the
optimal paths corresponding to those pairs.

It is important to recognize what the pair HMM mod-
els do not learn. They do not learn to recognize the query
sequences{qni}90

i=1, for example. Thus, it is not so impor-
tant what the query gene names are, but it is very impor-
tant that they be common enough to exhibit many variations
in form. Intuitively, the objective of this method is to learn
from a large sample of name pairs what is not important
in a gene name, as opposed to what signals a difference
in meaning. The pair HMM models learn to assign a high
probability to those pairs designated related and to any pairs
that are related in a similar manner. This knowledge is cap-
tured in the state transition probabilities and in the character

pair output probabilities. Some characters are less critical to
the meaning of gene name phrases, particularly punctuation.
Note that in this setting we treat gene names as sequences
in their original alphabet, which, in addition to letters, dig-
its and the space, includes the following special characters:
[]{}(),.”’*&/ <>−+.

3.2. BLAST

BLAST, is a fast partial matching algorithm used for DNA
and protein sequence comparison introduced by (Altschul
et al., 1990). It compares a query sequence to all the se-
quences in a specified database and assigns a score to each
sequence that reflects the degree of similarity with the query.
Krauthammer et al. (2000)noted that text string matching
and DNA sequence comparison are related problems with
the exception of the alphabets used. The problem that they
addressed was how to identify gene and protein names in
journal articles. They proposed encoding text characters us-
ing the nucleotide alphabet, by substituting each charac-
ter with a predetermined four-letter nucleotide combination.
When both the query name and the text to be searched are
thus encoded, BLAST may be used to query the gene name
against the database of scientific articles.

While our problem of finding related gene names is
somewhat different, clearly the same idea can be applied
to it. To use BLAST we have translated each query name
qn(i) and all of the phrases inGNqn(i) into the nucleotide
alphabet (‘A’, ‘C’, ‘G’, and ‘T’) representation according
to the conversion table given in (Krauthammer et al., 2000).
Now each letter is represented by a four-letter combination.
For example, letter ‘A’ corresponds to ‘AAAC’, letter ‘B’
corresponds to ‘AAAG’, the space character corresponds to
‘ATCC’, etc. Thus the gene nametnf betais represented as
ACGG|ACAG|AACT|ATCC|AAAG|AACG|ACGG|AAAC
(bars added for clarity).

BLAST outputs phrases that potentially match the query
phrase along with a raw scoreS and an expectation value
(E-value). TheE-value is defined as the number of different
alignments with raw scores greater than or equal toS that
are expected to occur in the database search by chance. The
lower theE-value, the more significant the match. We take
the negative of theE-value as the score for our purposes.
BLAST only outputs the phrases that have anE-value less
than some specified threshold. We have chosen this threshold
to be 1,000, which allows us to obtain a sufficient number
of phrases in the output. BLAST also requires a setting for
word size that represents the minimal size of pieces that must
agree in order to detect a match within a pair of phrases. We
have chosen a word size of eight in the nucleotide alphabet
for increased sensitivity.

3.3. n-Gram phrase matching

Another approach to identification of phrases related
to a query gene name is based on flexible phrase based

102 L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107

query handling algorithms (Kim and Wilbur, 2001). These
algorithms decompose phrases into smaller pieces, sub-
strings or n-grams, and create a so-called document or
bag-of-substrings (in analogy with bag-of-words) represen-
tation for each phrase. The relatedness of two phrases is
scored based on then-grams they have in common and gen-
erally employs a weighting scheme for then-grams. Phrases
may be decomposed under different rules with quite differ-
ent results and we investigate three different approaches.

3.3.1. n-GRM
In this method (Wilbur and Kim, 2001) phrases are low-

ercased and broken into words at spaces. Assuming thatn
is three, individual words are broken into trigrams in such
a way that strings of lengthL produce (L-2) overlapping
triplets of letters. If the word length is less than three then
the whole word is taken as the only trigram produced. In this
method the beginning of a word is given more importance
than the remainder, as the first trigram appears in the docu-
ment in two different forms, twice marked with an added ‘!’
character at the end and once without. Also, the first char-
acter of each word appears alone, and for any two consecu-
tive words the first letters are used in occurrence order with
a space character between to form a so-called bridging tri-
gram. For example the document produced by 3-GRM de-
composition for the gene nametnf betais: tnf, bet, eta, tnf!,
tnf!, bet!, bet!, t#, b#, t b.

3.3.2. n!-GRM
In this method, phrases are lowercased, all the characters

except letters and digits are removed, and the remaining
characters are consolidated into a single string which is
treated as a whole. The resultant string is decomposed into
overlappingn-grams, (n − 1)-grams,. . . , 2-grams formed
from consecutive characters in such a way that strings
of length L produce (L−1) bigrams, (L−2) trigrams,. . . ,
(L−(n− 1)) n-grams. In this case, each piece is added only
once to the document being produced though duplicates
may arise from different parts of the string. For example, the
document produced by3!-GRM decomposition for the gene
nametnf betais: tnf, nfb, fbe, bet, eta, tn, nf, fb, be, et, ta.

3.3.3. SUB-word
A different approach to segmentation of phrases can be

based on what we might call the natural occurrence within
the data of segments as words. For any phraseph let A(ph)
denote the set of all contiguous alphanumeric substrings of
ph that have ends that either coincide with the ends ofph or
are demarcated by non-alphanumeric characters inph. Given
a set of phrases� let � denote the set of alphanumeric
phrases defined by

� =
⋃

ph∈�
A(ph) (5)

The set� will function for us like a lexicon. Again letph
denote a phrase and suppose thatA(ph) = {ani}ki=1 where

the segmentsani are assumed to be numbered in the order
that they occur inph. Then defineB(ph) as the set of all
elementsbn of � where for some 1≤ p ≤ q ≤ k, bn =
anp, . . . ,anq where we understand concatenation on the
right side of this equality whenp < q. GenerallyB(ph) will
be a richer representation ofph thanA(ph). Again letC(ph)
represent all those elements of� which occur as contiguous
substrings of elements ofB(ph). ThenC(ph) will generally
have more elements thanB(ph). We will let SUB1 stand for
the approach in which we represent eachph in � by the
elements ofB(ph) with a count equal to the number of ways
it is generated from the elements ofA(ph). Correspondingly
SUB2 will represent the approach that is the same as SUB1
except whenph is the query phrase it will be represented
by the elements ofC(ph) each with a count equal to the
number of ways it is generated from the elements ofB(ph).
Thus in SUB2 the phrases in the database all have the same
representation as in SUB1, but the query phrase is given a
potentially richer representation. However, all strings used
in representations are found in�.

3.3.4. Vector scoring
The different methods of representing a phrase as a doc-

ument are used to compare phrases using vector retrieval
formulas. Lett denote a feature (substring) which appears
in at least one document representing a phrase in� =
QN∪ ⋃90

i=1GNqn(i). Then there is associated witht a global
weightgwt given by the formula

gwt = log

(
N

nt

)
(6)

whereN is the number of phrases in the database� and
nt is the number of the documents representing members of
� that containt. Likewise if p is any phraset has a local
weight inp given by

lwpt = log(ftp + 1) (7)

where ftp is the number of timest occurs in the bag-of-
substrings representation forp. Such weights allow us to
represent any phrasep as a vector

vp = (vpt)t∈� (8)

where

vpt = lwpt
√

gwt. (9)

For any phrasesp andq we may then compute the similarity
betweenp andq by

sim(p, q) = vp · vq√
vp · vp · √

vq · vq (10)

which is the standard cosine similarity formula as given
in (Salton, 1989). This formula is applied to all the differ-
ent methods of representing phrases by substrings presented
here asn-gram methods. Given a queryqni in one of the test
sets, we compute sim(qni, x) for all x ∈ GNqn(i) and treat
the sim(qni, x) as scores in an attempt to differentiate thex
related toqni from thex unrelated toqni.

L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107 103

3.4. Combining methods

There is often a tradeoff between speed and accuracy. In
an attempt to obtain the advantage of both, we have used the
combination of fast and slow methods in the following way:
a computationally ‘cheaper’ method is used to score all the
pairs of phrases, and only after that another, more accurate,
method is applied to theT top scoring phrases extracted by
the first method. As we will show, this approach proves to
be very useful, and hence we will consider the combination
of methods.

3.5. Evaluating

To evaluate and compare all the different methods, we
have used standard recall and precision figures. Recall is
computed as the ratio of good phrases retrieved to the total
number of good phrases in the system. Precision is defined
as the ratio of the number of good phrases retrieved to the
total number of phrases retrieved.

Recall= number of relevant phrases retrieved

total number of relevant phrases

Precision= number of relevant phrases retrieved

number of phrases retrieved

Recall and precision are the simplest and most frequently
used measures of performance (Salton, 1992). For each
method we have estimated recall and precision values at
three different depths of retrieval, the top 20, 100, and
1,000 ranks. For recall and precision individual values are
computed for each query term, and then the individual val-
ues are averaged over all query terms to produce so-called
macro-averaged values (Manning and Schutze, 1999), and
it is these macro-averages we report.

4. Evaluation

4.1. HMM results

We have trained three Hidden Markov models with dif-
ferent state structures. The first is a one state model, it only
trains emission probabilities of a single state and there are no
state transitions. The other two models, ‘pure’ (HMM-3P)
and ‘mixed’ (HMM-3M), are three state models, where state
2 outputs only gaps in the first string, and state 3 outputs only
gaps in the second string. In the HMM-3P model, state 1
outputs only matches, whereas in the HMM-3M model, state
1 outputs both matches and gaps. In the three-state models,
both transition and emission probabilities are trained. All of
these models are symmetric and do not allow mismatches.

Given the trained model, the forward algorithm is used to
compute the probability of observing a given pair of phrases.
This probability is then used to construct a score measuring
the relatedness of two phrases as given inEq. (4). This

Table 1
Average recall and precision for three-state ‘mixed’, three-state ‘pure’,
and one-state models at cut-off ranks of 20, 100, and 1,000

20 HMM-3M HMM-3P HMM-1
Recall 0.448 0.418 0.198
Precision 0.706 0.684 0.324

100 HMM-3M HMM-3P HMM-1
Recall 0.691 0.649 0.404
Precision 0.412 0.376 0.217

1000 HMM-3M HMM-3P HMM-1
Recall 0.909 0.898 0.773
Precision 0.100 0.096 0.070

Score calculation based on the forward algorithm.

allows us to carry out a retrieval experiment testing how
well we could identify the names judged to be related to
the query gene or protein names. For each HMM model, we
have performed three-fold cross validation and calculated
macro-averaged recall and precision values that are given in
Table 1.

Three state models far outperform the one state model,
and the mixed three state model performs significantly better
than the pure three state model. The main concern with the
three state models is their long run time, which is a conse-
quence of the number of states and the length of the phrases.
The HMM-3M model with the forward algorithm took about
10 h of processing time on a 500 mHz Intel Pentium 3 with 4
Gigabytes of RAM on the full set of 90 queries. To improve
the speed, we have tried several techniques. One approach
was to use the Viterbi algorithm instead of the forward algo-
rithm to score the pairs of phrases. The score is calculated
in a similar manner, except log-probabilities of observations
are replaced with the log-probabilities of the optimal paths
detected by the Viterbi algorithm.Table 2presents these re-
sults.

In terms of run time, the Viterbi algorithm is roughly three
times as fast as the forward algorithm. The Viterbi algorithm
took on average 2.2 min per query, where each query phrase
was compared on average against 27,450 phrases. This is
getting into the practical range. Interestingly, the average
accuracy of Viterbi-based scoring outperforms the accuracy
of forward-based scoring in most cases. Especially for the

Table 2
Average recall and precision for three-state ‘mixed’, three-state ‘pure’,
and one-state models at cut-off ranks of 20, 100, and 1,000

20 HMM-3M HMM-3P HMM-1
Recall 0.450 0.429 0.269
Precision 0.708 0.692 0.433

100 HMM-3M HMM-3P HMM-1
Recall 0.691 0.671 0.508
Precision 0.410 0.383 0.285

1000 HMM-3M HMM-3P HMM-1
Recall 0.914 0.897 0.821
Precision 0.103 0.098 0.078

Score calculation based on the Viterbi algorithm.

104 L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107

Table 3
Average recall and precision ofn-gram phrase matching approaches and of BLAST at retrieval cut off ranks of 20, 100, and 1,000

20 4!-GRM 3!-GRM 4GRM 3GRM BLAST SUB1 SUB2
Recall 0.397 0.394 0.262 0.322 0.345 0.287 0.183
Precision 0.582 0.583 0.440 0.519 0.540 0.542 0.344

100 4!-GRM 3!-GRM 4GRM 3GRM BLAST SUB1 SUB2
Recall 0.642 0.646 0.423 0.569 0.521 0.482 0.369
Precision 0.360 0.364 0.259 0.338 0.282 0.315 0.259

1000 4!-GRM 3!-GRM 4GRM 3GRM BLAST SUB1 SUB2
Recall 0.915 0.917 0.715 0.869 0.837 0.673 0.684
Precision 0.104 0.104 0.081 0.092 0.088 0.065 0.075

1-state model, Viterbi-based scores produce a considerably
better ranking than forward-based scores. Clearly using as
a score the probability of the optimal path through the pair
of phrases is advantageous in terms of both run time and
accuracy.

4.2. n-Gram, subword segmentation, and BLAST results

All the query gene names and test set phrases have been
decomposed withn-gram phrase matching algorithms and
subword segmentation methods to obtain document repre-
sentations. These are then used to score the pairs of phrases
for similarity according toEq. (10). The query gene names
and test set phrases have also been encoded into the nu-
cleotide alphabet, and the BLAST algorithm applied to score
phrase pairs for relatedness. The results, parallel to those
given for the HMM models, are given inTable 3.

4.3. Combining methods

As we have noted above, the HMM models, especially
HMM-3M, perform very well except for a long run time.
Using the Viterbi algorithm instead of the forward algo-
rithm considerably improves the run time, but HMM-3M
still requires an amount of time that would make an online
implementation impractical. We have therefore combined
HMM-3M with a cheaper, i.e. much faster, method. For this
purpose, we have found3!-GRM matching to demonstrate
the best results, followed by4!-GRM matching. We first
perform3!-GRM and then apply HMM-3M to the top 1000
results coming from3!-GRM retrieval. This on the average
reduces the amount of work that HMM-3M has to perform
in this particular experiment by a factor of more than 27
times (a query phrase is, on the average, compared with 27K
phrases).Table 4presents the results of3!-GRM/HMM-3M
and not only is run time decreased but accuracy is also im-
proved in all cases over HMM-3M alone. The other meth-
ods listed inTable 3were all tried in place of3!-GRM, but
none of them performed as well.

To further assess the performance of the combined algo-
rithm 3!-GRM/HMM-3M we applied it to find names re-
lated to a query name among all the gene/protein names
that appear as features of sequences in GenBank (Benson

et al., 2003). We constructed a database of 1.41 million such
names from GenBank. Query strings were chosen from a set
of 1.14 million putative gene names extracted from MED-
LINE (Tanabe and Wilbur, 2004). A set of 120 strings were
randomly chosen and 107 of these were found to represent
valid gene names. These were all searched against the Gen-
Bank list and good results were found for 80% of them.
The remaining 20% were examined to ascertain the reason
for failure. The problem in most cases was a query string
consisting of a short specific term combined with a long
nonspecific term such asalleles, gene, binding site, factor,
protein, etc. For examplelxd allelesdoes not occur in the
database and when used as a query retrieves many strings
containing the termalleles. The problem is cured by search-
ing with lxd as this retrieves a relevant record at the third
rank. In most cases where a direct query fails and general
terms can be removed without affecting the identity of the
gene represented it is helpful to remove them. There are
other problems that can occur. For example, searching with
the termyeast pdr5is not as effective as searching with the
invertedpdr5 yeast. Also there are strings likeabl that oc-
cur in words likeprobable, thermostable, or variable that
are common components of gene names in GenBank. As a
result a query withabl does not retrieve relevant material.
In such cases one may find relevant material by first find-
ing all those database entries that contain the stringabl and
then ordering them by the reciprocal of their length. This is
a strategy that can replace3!-GRM when the latter fails.

Table 4
Results of combining3!-GRM matching and HMM-3M methods

20 HMM-3M 3!-GRM 3!-GRM/HMM-3M
Recall 0.446 0.394 0.449
Precision 0.701 0.583 0.710

100 HMM-3M 3!-GRM 3!-GRM/HMM-3M
Recall 0.687 0.646 0.689
Precision 0.404 0.364 0.412

1000 HMM-3M 3!-GRM 3!-GRM/HMM-3M
Recall 0.911 0.917 0.917
Precision 0.102 0.104 0.104

A ranking is first produced by3!-GRM and the top 1000 ranks are then
re-scored by HMM-3M to produced the results reported. For ease of
comparison, the results of HMM-3M andn!-GRM methods fromTables 3
and 4are also included.

L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107 105

5. Discussion

One of the interesting and unexpected results found in
this study was that, though the training of the pair HMM is
done to maximize the forward probabilities of the training
set pairs, the Viterbi algorithm actually gave the best results
in scoring the test sets. We believe this may be explained by
the fact that the forward algorithm actually sums up the prob-
ability over all possible alignment paths for two sequences
and most of these alignments will make no sense semanti-
cally, whereas the Viterbi algorithm computes the probabil-
ity of the most probable path and this will in many cases be
the path that is most semantically meaningful. Thus perhaps
it is not so surprising that the Viterbi algorithm gives the
better results. Fortunately in our setting Viterbi is a faster
algorithm because normalization can be used and underflow
avoided without resorting to a logarithmic representation of
numbers.

Another point of interest is that the two methods,
HMM-3M and 3!-GRM, complement each other. The
HMM-3M aligns two phrases by matching segments of the
phrases appearing in both strings. In this process no account
is taken of whether these segments are meaningful or not.
On the other hand,3!-GRM is able to measure the impor-
tance of different trigrams by their frequency throughout
the whole set of strings under consideration. Since the more
rare segments are more semantically significant,3!-GRM is
able to eliminate from consideration some pairs of strings
that would otherwise confuse the HMM-3M algorithm. Yet
3!-GRM is not competitive with HMM-3M in producing
the best ordering at the top ranks. In particular even though
3!-GRM was able to get about 91.7% of good documents
into the top 1,000 (recall at 1,000), it did not do a very
good job at arranging them: only a 58.3% precision is
achieved at the cut off rank of 20, which is on the average
equivalent to 11.6 relevant phrases in the top 20. But when
HMM-3M was applied to the top scoring 1,000 documents
from 3!-GRM, precision at 20 was improved to 71%, which
is on the average equivalent to 14.2 relevant phrases in the
top 20. Evidently both the recall and precision achieved
by combining the two methods are better than those for
HMM-3M alone because3!-GRM is able to rule out of the
top 1,000 ranks some of the phrases that HMM-3M would
have ranked high. One is led to speculate that an ideal al-
gorithm for the task we study would combine in a seamless
way the virtues of3!-GRM and HMM-3M. The form such
an algorithm might take is a subject for future research.

The combination3!-GRM/HMM-3M works quite well for
many of the morphological, syntactical, and irregular string
variations that are encountered in the nomenclature of genes
and proteins. However, there are significant ways in which
it could be improved and its scope broadened. First, the al-
gorithm has no ability to recognize thatlymphocyte asso-
ciated receptor of death, LARD, Apo3, DR3, TRAMP, wsl,
and TnfRSF12are all synonyms. Such relationships could
be recognized in a preprocessing step based on a database

of synonyms that might be compiled using methods such as
are described in (Yu and Agichtein, 2003; Yu et al., 2002).
Second, the algorithm is generally unable to deal effectively
with abbreviations, as inGT for glucosyl transferase, glu-
tamyl transpeptidase, or glutathione transferase. Again a
database of full forms and their abbreviations could be com-
piled, but then there is the additional problem of the ambigu-
ity of abbreviations, and even the observation that what may
in one case be an abbreviation of a gene name may in another
context be an abbreviation for something unrelated to genes
or proteins, e.g.,CAT abbreviateschloramphenicol acetyl
transferase, but alsocomputed axial tomography. While a
clear cut answer cannot be based on the strings alone, yet
a probabilistic approach seems possible. Finally, our algo-
rithm does not distinguish the actual words that appear in a
gene name and their potential relative importance beyond the
frequency of the trigrams that compose the terms. However,
there is semantic information in names that goes well beyond
this rudimentary level. For example, the namesangiotensin
andangiotensin receptorrepresent quite distinct entities as
signaled by the wordreceptor, even though the strings have a
strong similarity. Several investigators (Franzen et al., 2002;
Hanisch et al., 2003; Narayanaswamy et al., 2003) have de-
veloped descriptive categories of different types of words
that are used in the names of genes/proteins. While such
categories are used for named entity recognition in text they
may also prove useful in a system which gives a more sen-
sitive rating of the relatedness of two names. These are pos-
sible directions for future research.

Our immediate goal in this research was to develop a
method for comparing and rating two gene names for relat-
edness. We plan to use this to provide an access portal to
GenBank in which one may enter a putative gene name and
retrieve the names (with accompanying GenBank, i.d.) that
appear to be the closest. From these the user may select and
access those GenBank records judged by him to be useful
matches to his query. We currently have a prototype running
3!-GRM/HMM-3M. A second goal of our future research is
to employ the algorithm as a part of a named entity recogni-
tion system. Here a large accepted list of gene names would
be used, and potential names extracted from text would be
compared to the list. The level of match achieved would be
used as evidence in judging a putative name.

Appendix A. List of query gene names

11beta hsd
17beta hsd
18s rna
1bb
a2m
abl
acetyl coenzyme
acf

106 L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107

ache
aconitase
acp1
acrosin
acyl coenzyme
adenosylmethionine decarboxylase
adrenergic receptor
adrenomedullin
ae1
ags
beta spectrin
bombesin receptor
bsk
c33
caga
cannabinoid receptor
casein kinase
ccr4
connexin43
coproporphyrinogen oxidase
d1 receptor
delta4
diacylglycerol kinase
dinitrogenase reductase
ef1
elastin
epoxide hydrolase
factor va
filgrastim
gamma endorphin
grp94
heparin cofactor
hiv receptor
hsf1
igf1
interferon receptor
keratin
kininogens
leu3
ltd4 receptor
lymphotoxin
map1b
mcm2
monoamine oxidase
mre11
mucins
ngfi
ntr
opsin
ornithine decarboxylase
oxytocin receptor
p50
pbx1
pgi2
pkd
protein p53

rar gamma
retinoblastoma protein
rmp
sev
somatomedins
spectrin
stat5a
succinate dehydrogenase
synapsin i
tcrb
thymidine kinase
tlr4
tnf beta
triosephosphate isomerase
troponin i
tyrosine aminotransferase
ucp
v alpha
vegf c
vh1
wnt
xanthine oxidase
xpa
ypt1
yy1
zeta

References

Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D., 1990. Basic
local alignment search tool. J. Mol. Biol. 215, 403–410.

Ashburner, M., Lewis, S., 2002. On ontologies for biologists: the Gene
Ontology—untangling the web. Novartis Found Symp. 247, 66–80,
discussion 80–63, 84–90, 244–252.

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler,
D.L., 2003. GenBank. Nucleic Acids Res. 31 (1), 23–27.

Charniak, E., 1993. Statistical Language Learning. The MIT Press, Cam-
bridge, Massachusetts.

Cohen, K.B., Acquaah-Mensah, G.K., Dolbey, A.E., Hunter, L., 2002.
Contrast and variability in gene names. In: Proceedings of the Pa-
per Presentation at Natural Language Processing in the Biomedical
Domain, University of Pennsylvania, 11 July 2002.

Collier, N., Nobata, C., Tsujii, J., 2000. Extracting the names of genes
and gene products with a hidden markov model. In: Proceedings
of the Paper Presentation of the 18th International Conference on
Computational Linguistics, COLING’2000.

Consortium, T.G.O., 2000. Gene ontology: tool for the unification of
biology. Nature Genet. 25, 25–29.

Damashek, M., 1995. Gauging similarity with n-grams:
Language-independent categorization of text. Science 267, 843–848.

de Bruijn, B., Martin, J., 2002. Getting to the (c)ore of knowledge: mining
biomedical literature. Int. J. Med. Inf. 67 (1-3), 7–18.

de Bruijn, L.M., Hasman, A., Arends, J.W., 2000. Supporting the clas-
sification of pathology reports: comparing two information retrieval
methods. Comput. Meth. Progr. Biomed. 62, 109–113.

Durbin, R., Eddy, S., Krogh, A., Mitchison, G., 1998. Biological Sequence
Analysis. Cambridge University Press, Cambridge.

Frantzi, K., Ananiadou, S., Mima, H., 2000. Automatic recognition of
multi-word terms: the C-value/NC-value method. Int. J. Digital Li-
braries 3, 115–130.

L. Yeganova et al. / Computational Biology and Chemistry 28 (2004) 97–107 107

Franzen, K., Eriksson, G., Olson, F., Asker, L., Liden, P., Coster, J., 2002.
Protein names and how to find them. Med. Informat. 67, 49–61.

Fukuda, K., Tsunoda, T., Tamura, A., Takagi, T., 1998. Toward informa-
tion extraction: identifying protein names from biological papers. In:
Proceedings of the Paper Presentation at the Pacific Symposium on
Biocomputing, PSB’98.

Gotoh, O., 1982. An improved algorithm for matching biological se-
quences. J. Mol. Biol. 162 (3), 705–708.

Hahn, U., Honeck, M., Piotrowski, M., Schulz, S., 2001. Subword
segmentation–leveling out morphological variations for medical doc-
ument retrieval. Proc. AMIA Symp., 229–233.

Hanisch, D., Fluck, J., Mevissen, N.-T., Zimmer, R., 2003. Playing
biology’s name game: identifying protein names in scientific text. In:
Proceedings of the Paper Presentation at the Pacific Symposium on
Biocomputing, PSB’03.

Jacquemin, C., 1994. FASTR: A unification-based front-end to automatic
indexing. In: Proceedings of the Paper Presentation at the RIAO 94,
Rockefeller University, New York, NY.

Jacquemin, C., 2001. Spotting and Discovering Terms through Natural
Language Processing. The MIT Press, Cambridge, MA.

Kim, W.G., Wilbur, W.J., 2001. Corpus-based statistical screening for
content-bearing terms. J. Am. Soc. Informat. Sci. 52 (3), 247–259.

Krauthammer, M., Rzhetsky, A., Morozov, P., Friedman, C., 2000. Using
BLAST for identifying gene and protein names in journal articles.
Gene 259, 245–252.

Liu, H., Friedman, C., 2003. Mining terminological knowledge in large
biomedical corpora. Pac. Symp. Biocomput., 415–426.

Manning, C.D., Schutze, H., 1999. Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge, MA.

McCray, A.T., Srinivasan, S., Browne, A. C., 1994. Lexical methods for
managing variation in biomedical terminologies. In: Proceedings of
the Paper Presentation at the 18th Annual Symposium on Computer
Applications in Medical Care.

Mitchell, T.M., 1997. Machine Learning. WCB/McGraw-Hill, Boston.
Narayanaswamy, M., Ravikumar, K.E., Vijay-Shanker, K., 2003. A bio-

logical named entity recognizer. In: Proceedings of the Paper Presen-
tation at the Pacific Symposium on Biocomputing, PSB’03.

Needleman, S.B., Wunsch, C.D., 1970. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
J. Mol. Biol. 48 (3), 443–453.

Nenadic, G., Mima, H., Spasic, I., Ananiadou, S., Tsujii, J.-I., 2002.
Terminology-driven literature mining and knowledge acquisition in
biomedicine. Med. Informat. 67, 33–48.

Nenadic, G., Spasic, I., Ananiadou, S., 2003. Terminology-driven mining
of biomedical literature. Bioinformatics 19 (8), 938–943.

Proux, D., Rechenmann, F., Julliard, L., Pillet, V., Jacq, B., 1998. Detect-
ing gene symbols and names in biological texts: a first step toward
pertinent information extraction. In: Proceedings of the Paper Presen-
tation at the Ninth Workshop on Genome Informatics.

Pruitt, K., Maglott, D., 2001. RefSeq and LocusLink: NCBI gene-centered
resources. Nucl. Acids Res. 29, 137–140.

Rabiner, L.R., 1989. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proc. IEEE 77 (2), 257–
286.

Salton, G., 1989. Automatic Text Processing. Addison-Wesley Publishing
Company. Reading, MA.

Salton, G., 1992. The state of retrieval system evaluation, information
processing. Informat. Proc. Manag. 28 (4), 441–449.

Salton, G., 1995. Letter. Science 268 (June 9), 1418–1419.
Smith, L., Yeganova, L., Wilbur, W.J., 2003. Hidden Markov models

and optimized sequence alignments. Computat. Biol. Chem. 27, 77–
84.

Tanabe, L., Wilbur, W.J., 2002. Tagging gene and protein names in
biomedical text. Bioinformatics 18, 1124–1132.

Tanabe, L., Wilbur, W.J., 2004. Generation of a large gene/protein lexicon
by morphological pattern analysis. J. Bioinformat. Computat. Biol.
2 (1), 1–16, in press.

TREC-Program-Committee, 1995. Lett. Sci. 268 (June 9), 1417–1418.
Wilbur, W.J., Kim, W., 2001. Flexible phrase based query handling algo-

rithms. In: Proceedings of the Paper Presentation at the ASIST 2001
Annual Meeting, Washington, DC.

Yu, H., Agichtein, E., 2003. Extracting synonymous gene and protein
terms from biological literature. Bioinformatics 19 (Suppl 1), I340–
I349.

Yu, H., Hatzivassiloglou V., Friedman C., Rzhetsky A., Wilbur W.J., 2002.
Automatic extraction of gene and protein synonyms from MEDLINE
and journal articles. Proc. AMIA Symp., 919–923.

Yu, H., Hatzivassiloglou, V., Rzhetsky, A., Wilbur, W.J., 2002. Auto-
matically identifying gene/protein terms in MEDLINE abstracts. J.
Biomed. Inform. 35 (56), 322–330.

	Identification of related gene/protein names based on an HMM of name variations
	Introduction
	Background
	Overview

	Data source and preparation
	Creating data sets
	Training/testing sets

	Recognition methods
	Hidden Markov Model
	BLAST
	n-Gram phrase matching
	n-GRM
	n!-GRM
	SUB-word
	Vector scoring

	Combining methods
	Evaluating

	Evaluation
	HMM results
	n-Gram, subword segmentation, and BLAST results
	Combining methods

	Discussion
	List of query gene names
	References

